Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
Cognit Comput ; 14(5): 1677-1688, 2022.
Article in English | MEDLINE | ID: covidwho-1803133

ABSTRACT

Background: COVID-19 is a novel virus that affects the upper respiratory tract, as well as the lungs. The scale of the global COVID-19 pandemic, its spreading rate, and deaths are increasing regularly. Computed tomography (CT) scans can be used carefully to detect and analyze COVID-19 cases. In CT images/scans, ground-glass opacity (GGO) is found in the early stages of infection. While in later stages, there is a superimposed pulmonary consolidation. Methods: This research investigates the quantum machine learning (QML) and classical machine learning (CML) approaches for the analysis of COVID-19 images. The recent developments in quantum computing have led researchers to explore new ideas and approaches using QML. The proposed approach consists of two phases: in phase I, synthetic CT images are generated through the conditional adversarial network (CGAN) to increase the size of the dataset for accurate training and testing. In phase II, the classification of COVID-19/healthy images is performed, in which two models are proposed: CML and QML. Result: The proposed model achieved 0.94 precision (Pn), 0.94 accuracy (Ac), 0.94 recall (Rl), and 0.94 F1-score (Fe) on POF Hospital dataset while 0.96 Pn, 0.96 Ac, 0.95 Rl, and 0.96 Fe on UCSD-AI4H dataset. Conclusion: The proposed method achieved better results when compared to the latest published work in this domain.

2.
Microsc Res Tech ; 84(10): 2254-2267, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1218903

ABSTRACT

Coronavirus19 is caused due to infection in the respiratory system. It is the type of RNA virus that might infect animal and human species. In the severe stage, it causes pneumonia in human beings. In this research, hand-crafted and deep microscopic features are used to classify lung infection. The proposed work consists of two phases; in phase I, infected lung region is segmented using proposed U-Net deep learning model. The hand-crafted features are extracted such as histogram orientation gradient (HOG), noise to the harmonic ratio (NHr), and segmentation based fractal texture analysis (SFTA) from the segmented image, and optimum features are selected from each feature vector using entropy. In phase II, local binary patterns (LBPs), speeded up robust feature (Surf), and deep learning features are extracted using a pretrained network such as inceptionv3, ResNet101 from the input CT images, and select optimum features based on entropy. Finally, the optimum selected features using entropy are fused in two ways, (i) The hand-crafted features (HOG, NHr, SFTA, LBP, SURF) are horizontally concatenated/fused (ii) The hand-crafted features (HOG, NHr, SFTA, LBP, SURF) are combined/fused with deep features. The fused optimum features vector is passed to the ensemble models (Boosted tree, bagged tree, and RUSBoosted tree) in two ways for the COVID19 classification, (i) classification using fused hand-crafted features (ii) classification using fusion of hand-crafted features and deep features. The proposed methodology is tested /evaluated on three benchmark datasets. Two datasets employed for experiments and results show that hand-crafted & deep microscopic feature's fusion provide better results compared to only hand-crafted fused features.


Subject(s)
COVID-19 , Humans , Intelligence , Neural Networks, Computer , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL